What is Shazam?
What is Shazam?

• Query by mobile phone
• Started in Year 2000
• Headquartered in London
• Launched Service in August of 2002
• 1.8M+ tracks
• Service live in UK, Germany, Finland
• Coming soon to other countries in Europe and Asia
Everywhere you have your mobile

“T H E M O M E N T”

Radio - Car, Home, Work

TV and Cinema

Clubs and Bars

Cafes, Shops, Restaurants
Target Audience

Core target: Music mobile
- 18-25 years old
- Struggle to keep up with LATEST RELEASES
- Enjoy new technologies

Early Youth
- 14-17 years old
- Identify next purchase quickly
- Enjoy practical services

More Mature
- 26-40 years old
- Identify classic hits as well as new music
- Need advice on what to buy

Music ‘Experts’

Music Community

Music Confidence

if it sounds good, tag it
Shazam allows people to identify music over the mobile phone, anywhere and anytime.

- Dial 2580 & let the phone listen to the music.
- Shazam will terminate the call and send an SMS back with the name of the track & artist – this is called tagging.
- Access further content – Ringtones, Songmail..
- List of tagged songs available on http://www.shazam.com
Access your “tags”

- Track name, artist and album are currently displayed
- Shazam has more music data than currently used, prioritization will depend on consumer feedback and product roadmap
- Tags can be sorted in various ways
- User can buy CDs from a variety of online stores
And more...
Operating Constraints
Audio Source Constraints

• Imperfect audio source material
 – Physical media defects
 – Digital compression
 – Watermarks

• Imperfect audio equipment
 – Speed variation (turntables and drive mechanisms)
 – Poor speakers
 – Nonlinear phase

• Environmental factors
 – Propagation through air
 – Reverberation
 – Additive noise
Receiver Constraints

- Poor microphone
- Bandlimited sampling (8KHz)
 - 300-3500Hz telephone bandwidth
- AGC, VAD, and Squelch
- Background noise suppression and nonlinear voice enhancement
- Voice Codec
 - EFR, AMR, EVRC, QCP, etc.
- Network dropout, poor coverage, handoff
Search Constraints

- Be insensitive to offset (e.g. not just first or middle 30 seconds)
- Must have high sensitivity in the presence of noise and distortion
- Low probability of false positives
 - Not just “closest match”
 - Slightly challenging with respect to certain kinds of music, such as techno
 - Plagarism
Search Constraints

• Identify exact recording
 – (for many applications: rights mgmt, etc)

• Scale to millions of tracks
 – Statistical scaling (maintain high sensitivity and low false positives)
 – Computational scaling (must be fast to serve hundreds or thousands of requests per second without requiring inordinate CPU power).
 • log speed or better
 • parallelizeable
 – Reasonably small memory footprint
This Problem is Impossible

- A real-world sample:
 - Extremely challenging, discouraging
 - No known technique could work
 - Break news gently to colleagues
 - Find new job?
 - But actually…
How does it work?
Desired “Fingerprint” and System Properties

- Survives all the obstacles going from source material to recording received at our IVR
- Mostly reproducible, even in presence of noise
- Informative (reasonably high entropy)
- Tolerates shredded or partially missing features
- Tolerates spurious features
- Translation invariant
- Self-framing
• For each audio file, generate reproducible landmarks
 – Each landmark occurs at a time offset
• For each landmark, generate a “fingerprint” tag that characterizes its location
Aligned Tagged Landmarks

- Do same for sample
- Generate list of matching fingerprints
- Each correctly matching fingerprint must have same relative time offset
 \[\text{time}_{\text{db}} - \text{time}_{\text{sample}} = \text{Constant} \]
- Incorrectly matching fingerprints have random relative time offset
- Filter out cruft by doing a histogram on time differences!
- Score is size of biggest histogram peak
Non-matching: No alignment

Scatterplot of matching hash locations: No diagonal

Histogram of differences of time offsets: signals do not match

if it sounds good, tag it
Matching: alignment

Scatterplot of matching hash locations: Diagonal Present

Histogram of differences of time offsets: signals match

Fig. 3A

Fig. 3B
Spectrogram Peaks

- Extremely robust
 - Against noise
 - Against reverb, room dynamics
 - Against nonlinear distortion
- Reproducible
 - Everything you want
- Tend to survive through voice codec
So, we could let features be the peaks themselves:

- Extract time-frequency coordinates as skeletonized “constellation map” of “landmarks”
- Frequency value is “fingerprint”
- “sliding transparency”
• However, this is a little slow since individual peaks have low entropy
Combinatorial Hashing

- Fix speed problem by increasing entropy of feature space
- Use combinations of a small number (2-3) of constellation points
- Each point is taken as an “anchor point”
- Each anchor point has a “target zone”
Combinatorial Hashing

- Hash is formed between anchor point and each point in target zone, using frequency values and time delta.
- Fan-out causes mini “combinatorial explosion” in number of tokens.
- But compensated for by nearly 1e6 increase in speed and specificity.
What can it do?
Recognition rate – GSM codec

Signal/Noise Ratio (dB)

15 sec GSM
10 sec GSM
5 sec GSM
Sound Examples
Example 1
Example 4

Kajagoogoo and Limahl, *Never Ending Story*
1. Wim Mertens, *Struggle for pleasure*
2. Brahms, *Concerto for violin and Cello, A minor. Op. 102, allegro*
3. Ravel, *Bolero* (Dallas Symphony Orchestra)
4. Ravel, *Bolero* (London Symphony Orchestra)
5. Buena Vista Social Club, *Chan Chan*
6. Robert Miles, *Freedom*
7. M-People, *One Night in Heaven*
Live Example

if it sounds good, tag it
Other Applications

- Radio monitoring
- Ad tracking
- P2P fileshare monitoring
- Library music identification
- Cueing and alignment
- Audio Google (query by example)
- Etc.
Conclusions

• Non symbolic
• Non-generalizing “exact matches”
• Highly noise resistant
• Highly scalable
• Very fast
Q&A