Geometric Algorithms for Transposition Invariant Content-Based Music Retrieval

Esko Ukkonen, Kjell Lemström, and Veli Mäkinen

The C-BRAHMS project

Department of Computer Science, University of Helsinki

{ukkonen,klemstro,vmakinen}@cs.helsinki.fi

ISMIR’2003, October 26–30, Baltimore, USA.
The Task

Given the *pattern*, i.e. a short music excerpt of *m* notes

find whether it has transposed occurrences in a *source*: a large database of polyphonic music comprising *n* notes.
Straightforward Solution: Stringology

1. Encode music by using strings of pitches (or intervals).
2. Apply classical string matching methods (e.g. dynamic programming) separately for each monophonic voice.

Does not work if:

- too much musical decorations (noise) are present,
- voicing information is not available,
- the pattern may be distributed across the voices.
We represent music by using line segments $[s, s']$, where

- $s = (s_x, s_y) \in \mathbb{R}^2$ is the starting point,
- $s' = (s'_x, s'_y) \in \mathbb{R}^2$ is the ending point,
- and $s_y = s'_y$ and $s_x \leq s'_x$.

The segment consists of the points between its 2 end points.
Example of geometric representation:

In the special case, when $s = s'$; segments become points in \mathbb{R}^2.
Definitions of the Problems

(P1) Find translations of P such that all starting points of P match with some starting points of T.

(P2) Find all translations of P that give a partial match of starting points of P among starting points of T.

(P3) Find translations of P that give longest common shared time with T.
Complexities (worst case): best known vs. our

<table>
<thead>
<tr>
<th>Problem</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P1) best known</td>
<td>$O(mn)$(^1)</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>our</td>
<td>$O(mn)$(^1)</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>(P2) best known</td>
<td>$O(mn \log(mn))$</td>
<td>$O(mn)$</td>
</tr>
<tr>
<td>our</td>
<td>$O(mn \log m)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>(P3) best known</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>our</td>
<td>$O(mn \log m)$</td>
<td>$O(m + n)$</td>
</tr>
</tbody>
</table>

\(^1\) $O(n)$ on the average
Solving (P1)
("Total Matching")

- Notes as points in \(\mathbb{R}^2 \) (the special case).

- Generalize the naïve string matching algorithm
 (see also Lemström and Tarhio 2000; Meredith et al. 2001):
 - Use \(m \) pointers, \(q_i \), each pointing to events in \(T \).
 - Function \(\text{next}(q_i) \) gives the next element in lexicographic order in \(T \).
Algorithm P1

1. for $i \leftarrow 1, \ldots, m$ do $q_i \leftarrow -\infty$
2. $q_{m+1} \leftarrow \infty$
3. for $j \leftarrow 1, \ldots, n - m$ do
4. \hspace{1em} $f \leftarrow t_j - p_1$
5. \hspace{1em} $i \leftarrow 1$
6. \hspace{1em} do
7. \hspace{2em} $i \leftarrow i + 1$
8. \hspace{1em} $q_i \leftarrow \max(q_i, t_j)$
9. \hspace{1em} while $q_i < p_i + f$ do $q_i \leftarrow \text{next}(q_i)$
10. \hspace{1em} until $q_i > p_i + f$
11. if $i = m + 1$ then output(f)
12. end for.
Solving \((P2)\)
("Partial Matching")

- Notes as points in \(\mathbb{R}^2\) (the special case).
- \((P2)\): find translations \(f\) such that \((P + f) \cap T\) is nonempty.
- We call such \(P + f\) a partial occurrence of \(P\) in \(T\).
- We need:
 - \(m\) pointers \(q_i\) (as above);
 - a priority queue \(F\) (\(min\) queries and updating: \(O(\log m))\);
 - and a counter \(c\).
CoreOfP2

1. \(f \leftarrow -\infty; c \leftarrow 0; \)

 do

2. \(f' \leftarrow \text{min}(F); \text{update}(F) \)

3. if \(f' = f \) then \(c \leftarrow c + 1 \)

4. else \{ output\((f, c)\); \(f \leftarrow f' \); \(c \leftarrow 1 \) \}

5. until \(f = \infty \)
Solving (P3)
("Longest Common Time Matching")

- Task: find translation f such that line segments of $P + f$ intersects T as much as possible.
We need:

- lexicographic order of end points;
- Translation vector f separated into a pair (f_x, f_y);
- priority queue F;
- array F_y.
- $4m$ pointers q_i to define turning points in a feature space:
We need:

- lexicographic order of end points;
- Translation vector f separated into a pair (f_x, f_y);
- priority queue F;
- array F_y.
- $4m$ pointers q_i to define turning points in a feature space:
We need:

- lexicographic order of end points;
- Translation vector f separated into a pair (f_x, f_y);
- priority queue F;
- array F_y.
- $4m$ pointers q_i to define *turning points* in a feature space:
We need:

- lexicographic order of end points;
- Translation vector f separated into a pair (f_x, f_y);
- priority queue F;
- array F_y.
- $4m$ pointers q_i to define *turning points* in a feature space:
We need:

- lexicographic order of end points;
- Translation vector \(f \) separated into a pair \((f_x, f_y) \);
- priority queue \(F \);
- array \(F_y \).
- \(4m \) pointers \(q_i \) to define turning points in a feature space:
• The turning points are scanned through with the aid of the priority queue,
• Array F_y is needed for tracking values associated to distinct vertical translations.
The three presented algorithms solved the considered problems

(P1) total matching;
(P2) partial matching; and
(P3) longest common time matching

in time and space:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P1)</td>
<td>$O(mn)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>(P2)</td>
<td>$O(mn \log m)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>(P3)</td>
<td>$O(mn \log m)$</td>
<td>$O(m + n)$</td>
</tr>
</tbody>
</table>