Effects of song familiarity, singing training and recent song exposure on the singing of melodies

Steffen Pauws

ISMIR 2003, Baltimore, USA
Contents

• Motivation
• What do we know?: Memory for melodies
• What do we know?: Singing melodies
• Experiment
• Conclusion: Implications for ‘query by humming’
Motivation

• ‘Query by humming’ requires people to sing
• But, how well do people sing

• We do not know that well!
 Lack of knowledge on
 singing skills of the general public
 long-term memory issues
 how that all relates to the singing by ‘professionals’ and
 real-world song material (everyday singing)

• How can knowledge on singing be used in ‘query by humming’ applications?
What do we know?
Memory for melodies

• What properties are essential for a melody?
• Almost always essential are:
 – rhythm
 – intervals
 – contour
• But, you can change
 – key
 – tempo
 – timbre
 – loudness
without changing the melody
What do we know?

Memory for melodies

- Rhythm is essential
 (Marilyn Boltz, Mari Riess Jones, Edward Large, Carolyn Drake)
 - Listeners attend rhythmically to music
 - Just tapping the rhythm can be sufficient to recognise well-known melodies
 - Melodies under a different rhythm are hard to recognise
 - Melodies with complex rhythms are hard to remember
What do we know?

Memory for melodies

• Contour and intervals are essential
 (W. Jay Dowling, Dane Harwood, Judy Edworthy, Wouter Croonen)
 – The contour is the first thing you learn about a new melody
 – Melodies with the same contour get easily confused

 – For cueing long-term memory, intervals are required

• Only with
 – increasing song familiarity
 – increasing cognitive abilities (child ➔ adult)
 – musical training

intervals become more important
What do we know?

Singing melodies

• Singing refers to articulating a recalled melody

• Voice is the most difficult musical instrument
 (Lee Davidson, Daniel Levitin, Perry Cook, Johan Sundberg)
 – Delicate control of muscles with auditory feedback
 – Untrained singers tend to
 • use only a contour to control their singing
 • sing large intervals flat
 • accumulate interval errors (ending in a different key)
 • be unable to reflect on and improve their singing
 – However, some people can sing their favourite song at the correct pitch and at the correct tempo
Experiment

• Study of
 – singing familiar and less familiar songs of ‘the Beatles’
 – being a trained singer or an untrained singer
 – singing from memory and after listening to the song on CD
 (trial 1 and 2: singing from memory; trial 3: singing after listening)

• Participants
 – Trained singers: 8 students ‘Classical voice’ and ‘Musical theatre’ from Tilburg school of music
 – Untrained singers: 10 colleagues without any singing education

• Material
Sort the 12 cards with Beatles song titles

Sing 2 (most) familiar songs and 2 less (least) familiar songs twice from memory

Sing the songs once more after listening to the song on CD
Experiment
Measures

• Singing measured by
 – Tuning (‘starting at the correct pitch?’)
 – Contour (‘following the ups and downs?’)
 – Intervals (‘singing the correct tone distances?’)
 – Tempo (‘singing at the correct tempo?’)

Using reference melodies and tempo measurements of the original songs on CD

All reproductions were manually segmented
Experiment

Results: general

• 216 (18*4*3) reproductions of 12 Beatles songs

• Trained singers sang more notes (45) than untrained singers did (28)

• For familiar songs
 – 36 notes were sung (min: 12, max: 94)

• For less familiar songs
 – 19 notes were sung (min: 3, max: 65)
Experiment
Results: tuning

• Measure: deviation from the correct tone in semitones

• When singing from memory
 – participants chose randomly a pitch to start with
 – no absolute memory for the correct pitch

• After listening
 – trained singers (15/32) were better in adopting the correct pitch than untrained singers (9/32)
 – familiar songs (15/36) were better pitched than less familiar ones (9/36)
Experiment
Results: tuning

![Bar charts for 1st, 2nd, and 3rd trials showing deviation from correct pitch in semitones.]

- a. 1st trial
- b. 2nd trial
- c. 3rd trial

- trained singers
- untrained singers

Deviation from correct pitch in semitones
Experiment
Results: tuning

![Graph showing deviation from correct pitch in semitones for 3 trials.](image)
Experiment
Results: contour

• Measure: percentage correctly going ‘up’ or ‘down’

• In general
 – trained and untrained singers performed equally well (80%)
 – contours of familiar (82%) and less familiar songs (78%) were sung equally well

• After listening
 – contours of less familiar songs improved (75% → 82%)
Experiment
Results: interval

• Measure: percentage correctly sung intervals

• In general
 – trained singers (62%) sang more correct intervals than untrained singers (56%) did
 – familiar songs (63%) were better sung than less familiar ones (55%)

• After listening
 – the singing of less familiar songs improved (53% ➞ 61%)
 – the singing of familiar songs did not
Experiment
Results: tempo

• Measure: average beats per minute sung, correlated and compared with actual tempo on CD

• In general
 – trained and untrained singers performed equally well ($r > 0.9$)
 – tempo of familiar songs came close to actual tempo ($r > 0.9$)
 – tempo of less familiar songs came *not* that close to actual tempo ($0.8 < r < 0.9$)

• After listening
 – matching the actual tempo improved
Experiment
Results: tempo

• People cannot perceptually discriminate tempi that differ less than 6% (JND = 6%)
 – A tempo of 100 bpm is perceived similar to all tempi in the range of 94-106 bpm

• Taking this finding into account
 – 30% of reproductions had the ‘correct’ tempo, when singing from memory
 • Evidence for latent absolute memory for tempo
 – 49% of reproductions had the ‘correct’ tempo, after listening
Experiment
Results: tempo

![Bar charts showing percent deviation from actual tempo for different trials.](image)
Experiment
Discussion

• Study did not assess
 – the beauty and the willingness of singing
 – song complexity
 – music idiomatic differences

• It did assess singing performance while varying
 – singing training (trained and untrained singers)
 – song familiarity (familiar and less familiar songs)
 – recent exposure (singing from memory and after CD listening)
Experiment
Discussion

• No absolute memory for pitch; trained singers adopted the correct pitch only after listening to the song
• Some latent absolute memory for tempo: 1 out of 3
• Trained and untrained singers did not differ on contour (80%), they did on interval (62-56%)
• Except for contour, familiar songs were better sung than less familiar ones, but less familiar ones improved after listening to them
• Both trained and untrained singers improved their singing after listening to the song
Conclusion

Implications for ‘query by humming’

• Query by humming
 – Melody retrieval by search algorithms
 – Finding optimal alignment between pitches and durations of sung melody with melodies in database while taking into account singing errors
Conclusion

Implications for ‘query by humming’

• Users choose a random pitch to start
• Users sing contour and tempo most reliably
• Users sing intervals less precisely

• Singing performance differ on song familiarity, singing training and recent exposure, retrieval performance likewise

• Important user data for accurate retrieval
 – How familiar are you with the song?
 – When was the last time you listened to the song?
 – What is your singing ability (training)?
• and change search accordingly
Conclusion
Implications for ‘query by humming’

Retrieval performance statistics of ‘CubyHum’ QBH system on singing data using 1000-melody database (melody ~ 300 notes)